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A method describing NMR-signal formation in inhomogeneous tissue is presented which covers all diffusion
regimes. For this purpose, the frequency distribution inside the voxel is described. Generalizing the results of
the well-known static dephasing regime, we derive a formalism to describe the frequency distribution that is
valid over the whole dynamic range. The expressions obtained are in agreement with the results obtained from
Kubos line-shape theory. To examine the diffusion effects, we utilize a strong collision approximation, which
replaces the original diffusion process by a simpler stochastic dynamics. We provide a generally valid relation
between the frequency distribution and the local Larmor frequency inside the voxel. To demonstrate the
formalism we give analytical expressions for the frequency distribution and the free induction decay in the case
of cylindrical and spherical magnetic inhomogeneities. For experimental verification, we performed measure-
ments using a single-voxel spectroscopy method. The data obtained for the frequency distribution, as well as
the magnetization decay, are in good agreement with the analytic results, although experiments were limited by
magnetic field gradients caused by an imperfect shim and low signal-to-noise ratio.
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I. INTRODUCTION

The signal intensity in magnetic resonance imaging arises
mainly from spin density and longitudinal and transverse re-
laxation. The transverse relaxation is especially sensitive to
the magnetic properties of tissue, which is often composed of
structures with different magnetic susceptibility. In the pres-
ence of an external magnetic field, these structures induce an
inhomogeneous field which accelerates the transverse relax-
ation. Important examples where this susceptibility effect
plays a role are functional imaging of the brain �1� and cell
tracking �2–4�. The first depends on the paramagnetic prop-
erty of deoxyhemoglobin, which then acts as a natural con-
trast agent; the second uses external contrast agents, e.g.,
ultrasmall superparamagnetic contrast agents �USPIOs�, to
label cells like macrophages or stem cells �5�. At present,
these susceptibility-sensitive imaging techniques mainly pro-
vide qualitative information about the tissue structures, e.g.,
capillaries and cells. However, one paramount goal is to also
obtain quantitative data, e.g., what the capillary density is
�6,7� or how many cells are in a specific voxel �8�. To
achieve this, models are needed which relate the signal in-
tensity to these relevant structures. This information is com-
prised in the time evolution of the magnetization decay or,
what is equivalent, in its frequency spectrum. For example,
in a recent work we demonstrated that the volume fraction of
a capillary inside a voxel could be determined by the fre-
quency distribution around the capillary �cf. Fig. 3 in �9��.
Zhong et al. used these results to describe the signal forma-
tion in the human visual cortex by applying a balanced
steady-state free precession �SSFP� sequence �10�.

The motivation for this investigation is that for the above-
mentioned problems the question arises: which sequence to
use with which parameters. The first step to answering this
question is to characterize the tissue by the frequency distri-

bution caused by the enclosed field inhomogeneities. For a
given arrangement the frequency distribution exhibits a typi-
cal form which is dependent on the susceptibility difference
between the magnetized object and the surrounding medium,
the strength of the external magnetic field, and the volume
fraction of material inside the voxel. Detailed knowledge of
this form allows one to choose the magnetic resonant imag-
ing �MRI� sequence with parameters optimized to obtain in-
formation about the tissue properties which influence the fre-
quency distribution.

The intensity in an image taken by NMR techniques cor-
responds to the averaged signal from a three-dimensional
volume element called a voxel. Therefore, it is necessary to
understand the signal formation inside these voxels. The size
of such a voxel can vary from the millimeter down to the
micrometer range. As illustrated in Fig. 1, such a voxel may
contain small magnetic inhomogeneities that cannot be re-
solved by MRI such as blood-filled capillaries or air-filled
alveols. These inhomogeneities generate an inhomogeneous
local magnetic field Bz�r� depending on the shape of the
magnetic perturber, but can be modeled by cylinders or
spheres. Via the Larmor relation ��r�=�Bz�r�, the local field
strength is connected to a local resonance frequency ��r�
inside a voxel. To understand the signal formation process, it
is convenient to introduce the frequency distribution p���,
which is closely connected to the local Larmor frequency in
the sense that it is a density of states. The second quantity
which influences the signal formation is the pulse sequence
used, which causes a distinct excitation of different local
Larmor frequencies �. The NMR signal is the induced volt-
age in a receiver coil caused by the precession of the mag-
netization vector around the axis of the external magnetic
field in the z direction. Hence, the excitation strength for
each local frequency is the transverse magnetization Mx���
+ iMy���, which is also called the response function of the
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sequence and depends on the sequence of rf pulses applied.
Therefore, the average signal from a voxel can be expressed
as an integral over all local frequencies in the form �11–14�

M�t� = �
−�

+�

p����Mx��� + iMy����ei�td� . �1�

To illustrate this signal formation process, examples of the
relevant quantities are shown in Fig. 2. In the case of a
gradient-echo sequence �fast low angle shot �FLASH� �15��,
the response function is a constant, Mx���+ iMy���=const.
Thus, the time evolution of the signal is the Fourier transfor-

mation of the frequency distribution, which can be easily
obtained from Eq. �1�. Hence, we can state that the frequency
distribution is equivalent to the static inhomogeneous spec-
troscopic line shape of a free induction decay. As an illustra-
tion, we show a Lorentzian line shape for the frequency dis-
tribution in Fig. 2. The actual shape of the frequency
distribution depends on the form of the field inhomogeneity
and the diffusion in the surrounding medium. The effect of
different line shapes on the time evolution of an NMR signal
has been studied in detail in the case of a SSFP sequence by
Ganter �17�. The topic of this work is to give an analytical
approach to calculating this distribution and its experimental
verification.

One way to obtain the time evolution of the magnetization
is by solving the Bloch-Torrey equation directly. Including
diffusion, this is cumbersome and analytical approaches
work only in special cases, e.g., when ��r� is the frequency
of a linear gradient field �18–20�. Alternatively, it is possible
to solve the Bloch-Torrey equation numerically. For ex-
ample, this was applied to describe the effect of edge en-
hancement by diffusion �21–23� by applying the line-shape
theory of Kubo �24,25�. Another method to describe the
transverse relaxation was recently presented by Kiselev,
Posse, and Novikov �26–28�. They used analytical models
for very long and short correlation times. The first extends
the static dephasing regime and the second is a perturbation
approach in the local magnetic field. However, these results
are limited to special cases, which limits their range of ap-
plication. An approach that describes spin dephasing over the
whole dynamic range is the Gaussian approximation
�29–31�, which works as long as the stochastic dynamics are
restricted to a limited class �32�. A solution of the Bloch-
Torrey equation is also well approximated by the �extended�
strong collision approximation �33�. In order to consider the
non-Gaussian character of diffusion, the results of this ap-
proximation will be used throughout this work.

This work focuses on another way to access this problem.
Different parameters influence the signal obtained from a
voxel containing inhomogeneous magnetic fields. As can be
seen from Eq. �1�, both the sequence used, with its param-
eters �represented by Mx���+ iMy����, and the distribution of
field inhomogeneities inside the tissue �represented by p����
influence the signal arising from the voxel. To obtain infor-
mation about the signal evolution, we focus on the frequency
distribution.

In previous work, the frequency distribution was evalu-
ated in the static dephasing regime in which diffusion effects
are neglected. In the case of a homogeneous magnetized
sphere in the center of a voxel, the frequency distribution
exhibits a single peak �34�. The frequency distribution of a
cylindrical inhomogeneity inside a voxel shows a character-
istic shape with two peaks, while randomly distributed cyl-
inders lead to a Lorentzian-like distribution �9�.

While the static dephasing regime is well understood
�11,35�, the influence of diffusion of the water molecules
around the inhomogeneities is an important factor which in-
fluences the frequency distribution and must be taken into
account �36�. In this work, we give a rigorous deduction of
the frequency distribution inside a voxel with respect to the
shape of the particles generating the susceptibility differ-

FIG. 1. Voxel with the volume Vvoxel containing a magnetic
inhomogeneity G and the remaining dephasing volume V. The in-
homogeneity G generates the susceptibility difference �� to the
surrounding medium with the diffusion coefficient D in which the
diffusion of the nuclear spins occurs.

FIG. 2. Quantities that influence the signal formation inside a
voxel according to Eq. �1�. The response function Mx���+ iMy���
is sequence specific and used to describe the offresonance behavior
of these sequences �dashed line for a FLASH sequence �15� and
dotted line for a SSFP sequence �16��. A Lorentzian frequency dis-
tribution p��� is shown by the solid line.
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ences as well as the diffusion around these particles. To de-
scribe the diffusion process, a strong collision approximation
is applied which approximates the diffusion dynamics of
spins by simpler stochastic dynamics. Thus, it is possible to
deduce a formalism to describe the frequency distribution
around arbitrarily shaped field inhomogeneities.

First, in Sec. II we consider some general aspects of sig-
nal formation in nuclear magnetic resonance which are nec-
essary for the following work. Afterwards, coming from the
theory of the static dephasing regime, the expression of the
frequency distribution is extended to all diffusion regimes.
The limiting cases of motional narrowing and the static
dephasing regime are recovered by the appropriate limiting
procedures from the general result. This theory is applicable
to arbitrary geometries which can be evaluated numerically
or analytically. To demonstrate this procedure, the analytical
expressions for spherical and cylindrical inhomogeneities are
calculated in Sec. III. The experimental verification of the
analytical results is presented in Sec. IV. A summary and
conclusions are then given in Sec. V. A detailed description
of the approximation used and some remarks on the connec-
tion to Kubos line-shape theory are given in the Appendix.

II. GENERAL THEORY

From the general theory of NMR-signal formation, it is
known that the time evolution of the magnetization is com-
pletely determined by both the frequency distribution inside
the voxel and the response function of the NMR-pulse se-
quence used �cf. Eq. �1��. While the effects of diffusion on
the response function are well understood �37–39�, the fre-
quency distribution has only been investigated in the static
dephasing regime �9,34�. Thus, the topic of this work is to
obtain a general expression for the frequency distribution
which is valid for all diffusion regimes.

A. Spin dephasing inside a voxel

In this part, an outline of the formation of the NMR signal
is presented. To this end, we give a short review of the ideas
behind the strong collision approximation required to deduce
the frequency distribution at all diffusion regimes. As is well
known, the NMR signal arises from the transverse magneti-
zation inside a voxel. To describe its time evolution, we con-
sider a single voxel with volume Vvoxel=V+G, as shown in
Fig. 1. A magnetic inhomogeneity with volume G is located
inside this voxel and surrounded by tissue with a constant
diffusion coefficient D and volume V where the diffusion and
dephasing of spins take place. Thus, it is possible to intro-
duce the volume fraction of the inhomogeneity, �=G /Vvoxel.
The inhomogeneity generates a susceptibility shift �� lead-
ing to an inhomogeneous magnetic field Bz�r� and thus a
spatially varying Larmor frequency ��r� inside the voxel. As
shown in �40,41�, this local frequency is given by

��r� = 	�
�2

�z2�
G

d3r�

�r − r��
, �2�

where 	�=���B0 characterizes the frequency shift caused
by the magnetic field inhomogeneity.

To describe the time evolution of the dephasing of the
transverse part of the magnetization vector, we assume that
for all diffusion regimes the Bloch-Torrey equation �18�

�

�t
m�r,t� = �D�2 + i��r��m�r,t� �3�

is valid. The local frequency ��r� is given in Eq. �2� and
depends on the form of the macroscopic field inhomogeneity
only. Here, m�r , t�=mx�r , t�+ imy�r , t� is the magnetization
which is generated at point r in polar form. Since we are
interested in the effect of the susceptibility-induced macro-
scopic field inhomogeneity, we focus our investigation on
this effect. For this reason, other terms of the full Bloch-
Torrey equation �42� are neglected.

In NMR experiments, only the signal emitted from the
whole voxel can be measured. Thus, we focus on the average
magnetization of the voxel which is given by

M�t� =
1

V
�

V

d3rm�r,t� . �4�

To solve the Bloch-Torrey equation �3�, we will describe
the diffusion process in the sense of transition dynamics. Due
to diffusion through the local inhomogeneous magnetic field,
the spin is exposed to different Larmor frequencies ��r� at
different times. This diffusion process is exclusively charac-
terized by the correlation time 
, which depends on the form
and size of the perturber, and the diffusion coefficient D
�41,43� and can be written in terms of the local Larmor fre-
quency


 =
1

��2�r��DV
�

V

d3r��r�	−
1

�2
��r� , �5�

where ��2�r��=1/V�Vd3r�2�r�. The influence of the suscep-
tibility effects and the strength of the external magnetic field
determine the static frequency 	����B0. On the contrary,
the diffusion is described by the correlation time, which in-
duces the dynamic frequency 1/
 of field fluctuations. Com-
parison of both of the frequencies determines the underlying
diffusion regime �44�. If the diffusion can be neglected, i.e.,
	��1/
, the static dephasing regime holds, whereas in the
opposite case 	�1/
, the approximations of the motional
narrowing regime can be applied.

If the time scale of the diffusion 
 is well separated from
the time scale of dephasing, i.e., 
T2

*, one can assume that
diffusion and dephasing are described by stochastically inde-
pendent processes. These separated time scales lead to the
effect that every spin diffusing around the inhomogeneity
covers nearly all off-resonance frequencies with a probability
according to their occurrence in the frequency distribution.
From this point of view, the spin ensemble can be described
as an ergodic system. This occurs on the time scale of the
correlation time 
. Hence, the time scale on which the local
Larmor frequencies are correlated is much smaller than the
time scale of the dephasing related to the susceptibility ef-
fects of the field inhomogeneity. With this in mind, the origi-
nal diffusion process can be considered as a stationary Mar-
kov process and the diffusion operator D�2 can be replaced
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by the strong collision operator D �for details see the Appen-
dix�. Thus, the strong collision approximation will work well
in the motional narrowing regime which is characterized by
the above assumption. On the other hand, the equilibrium
transition dynamics are also exact in the case of nondiffusing
spins 
→� �cf. Eqs. �A3� and �A8��. In this case, the equi-
librium distribution of spins is given at all times and the
diffusion operator can be replaced by the strong collision
operator, in the sense that both operators vanish. From this
point of view, the strong collision approximation can be con-
sidered as an interpolation between both limiting diffusion
regimes and will be used to describe the influence of diffu-
sion over the whole dynamic range.

As shown in the Appendix, it is convenient to introduce
the Laplace transformation of the magnetization time evolu-
tion in the form

M̂�s� = �
0

�

dt e−stM�t� . �6�

Throughout this work, quantities in the static dephasing re-
gime will be labeled with the subscript zero �i.e., the time
evolution of the magnetization in the static dephasing regime

M0�t� corresponds to the Laplace transformation M̂0�s��. In
order to generalize the static dephasing results to arbitrary
diffusion regimes via the correlation time 
, we derive in the
Appendix the expression

M̂�s� =
M̂0�s + 
−1�

1 − 
−1M̂0�s + 
−1�
. �7�

This is the crucial result of the strong collision approxima-
tion and will be utilized in the course of this work to extend
the frequency distribution to all diffusion regimes.

B. Static dephasing regime

As shown previously, the results of the static dephasing
limit can be extended in a simple way to cover all diffusion
regimes by considering the Laplace transformation of the
relevant quantities �7�. Hence, the ability to calculate all
quantities in the static dephasing regime is imperative. The
static dephasing regime is characterized by D=0; therefore,
the signal from a voxel is given by

M0�t� =
1

V
�

V

d3r��r�ei��r�t, �8�

where V is the dephasing volume, ��r� is the local Larmor
frequency, and ��r� is the spin density �11,34,35,45�. For the
spin density, we assume ��r�=�=const throughout the whole
voxel. On the other hand, the signal can be written in terms
of frequency distribution in the form

M0�t� = ��
−�

+�

d�p0���ei�t. �9�

Adapting methods of statistical physics �9,34,46�, we are
able to define a frequency density of states. Therefore we
equate Eqs. �8� and �9�:

�
−�

+�

d�p0���ei�t =
1

�V
�

V

d3r��r�ei��r�t. �10�

Performing an inverse Fourier transformation and using the
definition of the Dirac distribution one can write the fre-
quency distribution in the following way:

p0��� =
1

�V
�

V

d3r��r�	�� − ��r�� , �11�

which has the properties of a probability density

�
−�

+�

d�p0��� = 1, p0��� � 0. �12�

This frequency density of states is equivalent to the static
inhomogeneous spectroscopic line shape of a free induction
decay and is also known as an off-resonance frequency dis-
tribution in the field of magnetic resonance imaging. The
term density of states is used to show the close connection to
statistical physics which enables the use of the methods used
in this field.

Using the Fourier representation of the Dirac 	 distribu-
tion, the integral �11� can, in principle, be evaluated analyti-
cally for any given local Larmor frequency ��r�. For com-
plicated geometries, the frequency distribution can be
determined numerically by dividing the dephasing volume V
into small subvoxels and averaging the Larmor frequency in
each of them. The frequency distribution is then the histo-
gram of the number of subvoxels according to the Larmor
frequencies. However, this method cannot include diffusion
effects. Therefore, another way to calculate the diffusion-
dependent frequency distribution will be shown in the next
subsection.

For this purpose, we will utilize Eq. �7� which connects
the static dephasing results with all other diffusion regimes.
Therefore, it is necessary to know the Laplace transformation
of the magnetization time decay in the static dephasing re-
gime and its connection to the other relevant quantities:

M̂0�s� = �
0

�

dt e−stM0�t� �13�

=��
−�

+�

d�
p0���
s + i�

�14�

=��
V

d3r
1

s − i��r�
, �15�

which can be easily deduced using properties of the Laplace
transformation.

C. Extension to all diffusion regimes

To find an expression for the frequency distribution it is
convenient to start with a generalization of Eq. �9� to all
diffusion regimes where the signal can be written as a Fou-
rier transformation of the frequency distribution

ZIENER et al. PHYSICAL REVIEW E 76, 031915 �2007�

031915-4



M�t� = ��
−�

+�

d�p���ei�t. �16�

The frequency distribution is given by the inverse Fourier
transformation in the following way:

p��� =
1

2��
�

−�

+�

dt e−i�tM�t� �17�

=
1

2��
�M̂�i�� + M̂*�i��� �18�

=
1

��
�Re M̂�i��� , �19�

where M̂�s� is the Laplace transformation of the magnetiza-
tion time evolution. Up until this point, no approximation has
been applied. For calculating the Laplace transformation, we
introduce the crucial result of the strong collision approxi-
mation �7� in Eq. �19� and obtain

p��� =
1

��
�Re

M̂0�i� + 
−1�

1 − 
−1M̂0�i� + 
−1�
� . �20�

To find a connection between the frequency distribution p���
and the local Larmor frequency ��r�, we utilize the relation-

ship between the Laplace transformation M̂0�s� and ��r�
given in Eq. �15�. Setting s= i�+
−1 in Eq. �15� and inserting
in the above equation, we eventually arrive at

p��� =



�
�Re	�

V

d3r

1 + i
�� − ��r��
−1

− ��−1� .

�21�

This final expression is the generalization of Eq. �11� for all
diffusion regimes. It depends on the correlation time and the
local Larmor frequency only. Although it has a quite simple
structure, analytical solutions are only available in special
cases of the geometry of the magnetic inhomogeneity G and
the dephasing volume V=Vvoxel−G.

From Eq. �7�, we obtain in the limit of small correlation

times lim
→0 M̂�s�=� /s, which leads to a 	 peak according
to the motional narrowing limit lim
→0 p���=	���. As ex-
pected, in the limit of nonmoving spins, all observables tend

to their static dephasing limit, i.e., lim
→� M̂�s�=M̂0�s�,
which leads to the static dephasing frequency density of
states given in Eq. �11�, i.e., lim
→� p���= p0���.

FIG. 3. Left side: cylinder with a tilt angle � to the external
magnetic field B0. According to Krogh’s capillary model, the cylin-
der is surrounded by a cylindrical voxel. The dephasing occurs in
the remaining volume V. Right side: cross-sectional view of the
cylinder and the coaxial surrounding voxel with the polar coordi-
nates r and �. The radius of the cylinder is denoted as RC, the
radius of the voxel as R.

FIG. 4. Diffusion-dependent frequency density of states p���
for cylinders obtained from Eq. �50� using the cylinder H function
given in Eq. �35�. The parameters are volume fraction �=0.2, equa-
torial frequency shift 	��=1000 s−1, and radius RC=5 �m.

FIG. 5. Diffusion-dependent signal decay M�t� for cylinders ob-
tained by a Fourier transformation of the frequency density of states
p��� according to Eq. �16�. The parameters are volume fraction �
=0.2, equatorial frequency shift 	��=1000 s−1, and radius RC

=5 �m.
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Until now, only gradient echo sequences have been con-
sidered. In order to describe the magnetization time evolu-
tion of a classical Hahn-spin-echo experiment, MSE�t� �47�,
we start from the results of a gradient echo sequence. Know-
ing the free induction decay of the gradient echo sequence
M�t� given in Eq. �16�, according to �48�, we are able to
obtain the spin-echo magnetization time evolution

MSE�t� = e−t/
 +
e−t/




�

0

t

d� e�/
�M� �

2
��2

. �22�

III. APPLICATION TO INHOMOGENEOUS TISSUES

The general theory derived in the previous section can be
used to obtain the frequency distribution p��� for any diffu-
sion regime around a magnetic inhomogeneities of arbitrary
shape. In order to obtain analytical expressions for the fre-
quency distribution, we assume that the shape of the voxel is
the same as the shape of the magnetic inhomogeneity; i.e.,
the voxel arises from the magnetic inhomogeneity by a cen-
tral dilation. This means, for example, that for a cylindrical
magnetic inhomogeneity, the voxel has the shape of a cylin-
der �see Fig. 3�. The well-known Krogh capillary model �49�,
where a cylindrical capillary is surrounded by a cylindrical
volume of tissue, is adapted in this case. Assuming the vol-
ume fraction �=G /Vvoxel fulfills the condition �1, the ac-
tual shape of the voxel is irrelevant and the result is the same
as for a cuboid voxel of the same volume �9,35�. In the next
subsections, we demonstrate the formalism for cylindrical
and spherical inhomogeneities. In the case of small volume
fraction � these special results can easily be generalized to
arbitrary shaped objects.

A. Cylinders

As a first example which can be solved analytically, we
consider a cylinder which has a tilt angle � to an external
magnetic field B0. The cylinder generates the susceptibility
difference �� to the surrounding tissue, which leads to the
inhomogeneous magnetic field

B�r� =
��

2
B0 sin2 � RC

2 cos 2�

r2 , �23�

where �r ,�� are the polar coordinates in the cross-sectional
view �see Fig. 3� �50�. Introducing the characteristic equato-
rial frequency shift

	�� = �B�r = RC,� = 0� �24�

=�
��

2
B0 sin2 � , �25�

where � is the gyromagnetic ratio, we have

�C�r� = 	��RC
2 cos 2�

r2 . �26�

As described above, we assume the cylinder with radius RC
to be surrounded by a concentric cylindrical voxel with ra-
dius R. In this case, the dephasing volume V is the space
between the two concentric cylinders with radii RC and R.
Performing the integration in Eq. �11� using the local fre-
quency �26� yields �see Eq. �9� in �9��

p0,C��� =�
�

1 − �

	��

��2�1 − � �

	��
�2

for � � − �	�� or � � �	��,

�

1 − �

	��

��2	�1 − � �

	��
�2

−�1 − � �

�	��
�2
 for − �	�� � � � �	��,

0 otherwise,
� �27�

where �=RC
2 /R2 is the volume fraction �0���1� of the cylinder inside the voxel. Introducing this static dephasing frequency

density of states �27� into the Fourier transformation �9�, we obtain an expression for the magnetization decay in the static
dephasing regime:

FIG. 6. Diffusion-dependent spin-echo signal decay MSE�t� for
cylinders obtained from Eq. �22� with the gradient-echo magnetiza-
tion decay M�t� shown in Fig. 5. The parameters are volume frac-
tion �=0.2, equatorial frequency shift 	��=1000 s−1, and radius
RC=5 �m.
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M0�t� =
�

1 − ��1F2��−
1

2

1

2
, 1� − ��	��t

2
�2� − �1F2��−

1

2

1

2
, 1� − �	��t

2
�2�� , �28�

where the generalized hypergeometric function or Barnes ex-
tended hypergeometric function is defined as �51�

pFq�a1, . . . ,ap

b1, . . . ,bq
�z� = �

k=0

�
�a1�k�a2�k ¯ �ap�k

�b1�k�b2�k ¯ �bq�k

zk

k!
�29�

and the Pochhammer is symbol given by

�x�k =
��x + k�

��x�
. �30�

Alternatively, the magnetization decay in the static dephasing
regime M0�t� can be obtained by introducing the frequency
field �C�r� given in Eq. �26� into the general expression �8�.

Obviously, the magnetization decay in Eq. �28� can be
expressed in the form

M0�t� =
�

1 − �
�hC��	�� t� − �hC�	�� t�� , �31�

with the cylinder-specific h function

hC�x� = 1F2��−
1

2

1

2
, 1� − � x

2
�2� , �32�

which corresponds to the function g�x� given in Eq. �13� of
�9�. In order to obtain the frequency distribution in all diffu-
sion regimes, it is necessary to start with the calculation of
the Laplace transformation of the magnetization decay in the

static dephasing regime M̂0�s� with the help of one of the

equations �13�–�15�. All of them lead to the same result for
the Laplace transformation of the magnetization decay

M̂0�s�:

M̂0�s� =
�

1 − �

1

s
	�1 +

�2	��
2

s2 − ��1 +
	��

2

s2 
 . �33�

To abbreviate this expression, we rewrite the Laplace trans-
formation in close analogy to Eq. �31� in the form

M̂0�s� =
�

1 − �

1

s
	HC� s

�	��
� − �HC� s

	��
�
 , �34�

with the cylinder specific function

HC�y� =�1 +
1

y2 . �35�

To calculate the Laplace transformation of the magnetization
valid in all diffusion regimes, we have to introduce Eq. �34�
into Eq. �7�. The resulting Laplace transformation M̂�s� has
to be inserted into Eq. �19�, and we eventually arrive at

p��� =

C

�� �Re

HC�1 + i
C�

�
C	��
� − �HC�1 + i
C�


C	��
�

1 − �

�
�1 + i
C�� − HC�1 + i
C�

�
C	��
� + �HC�1 + i
C�


C	��
�� . �36�

This expression is the frequency density of states for cylin-
drical geometries which depends on the diffusion �character-
ized by the correlation time 
C�, the susceptibility effect
�characterized by the frequency shift 	���, and the shape of
the magnetized object �characterized by the function HC�. An
expression for the frequency distribution equal to Eq. �36� is
obtained if the local resonance frequency given in Eq. �26� is

directly inserted in the general expression �21�.
In order to calculate the frequency distribution with the

help of Eq. �36�, it is necessary to determine the correlation
time 
C that describes the diffusion effects. In the case of a
nonpermeable cylinder, we assume reflecting boundary con-
ditions on the surface of the inner cylinder. In this case, the
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correlation time can be obtained by evaluating the general
expression in Eq. �5� as shown in �6,43�:


C = −
RC

2

4D

ln �

1 − �
. �37�

To illustrate the dependence on the diffusion, the frequency
density of states is shown in Fig. 4 for different values of the
diffusion coefficient D. In the case of a vanishing diffusion
coefficient the frequency density of states coincides with the
static dephasing frequency distribution given in Eq. �27� and
is shown in Fig. 1 of �9�. A similar characteristic form of the
frequency distribution was obtained by Zimmermann and
Foster numerically for cylindrical geometries �52�. In the
case of an increasing diffusion coefficient D, the frequency
distribution tends to a single-peaked narrow line shape which
is expected in the motional narrowing regime, as can be seen
from Fig. 4.

A Fourier transformation of the frequency density of
states p��� according to Eq. �16� leads to the magnetization
decay shown in Fig. 5. Also, here in the static dephasing
regime, the magnetization decay coincides with the former
results given in Eq. �31� using the cylinder-specific function
�32�, as shown in Fig. 2 of �9�. The spin-echo signal decay
can be obtained from Eq. �22� and is shown in Fig. 6.

B. Spheres

The second case which is possible to solve analytically is
a homogeneous magnetized sphere in an external magnetic
field. The frequency density of states and signal properties in
the static dephasing regime were extensively studied by
Cheng et al. �34� analytically. The experimental verification
was performed by Seppenwoolde et al. �53�. The case of
spheres has also been treated numerically to investigate sig-
nal formation in lung tissue, where the alveolus is modeled
by a sphere surrounded by a water-filled shell �54–57�. The
application of the static dephasing regime to the problem of
signal formation around superparamagnetic iron-oxide-
labeled cells was treated by Bowen et al. �58�. As mentioned
in Sec. II B, they obtained the frequency distribution in terms
of a histogram.

The frequency around a sphere with the radius RS is the
field of a dipole given by

�S�r� = 	�RS
3 3 cos2 � − 1

r3 , �38�

where 	� is the characteristic frequency shift and � is the
angle between the external magnetic field B0 and the position
vector r. Analogously to the case of cylinders, we assume the
sphere to be located in the center of a spherical voxel with
the radius R. Performing the integration in Eq. �11� using the
local frequency �38�, the static dephasing frequency density
of states is given by �34�

p0,S��� =�
�

3�3�1 − ��
�	�

�
�2�2 −

�

	�
��1 +

�

	�
for � � − �	�� or � � 2�	��,

�

3�3�1 − ��
�	�

�
�2	�2 −

�

	�
��1 +

�

	�
− �2 −

�

�	�
��1 +

�

�	�

 for − �	�� � � � 2�	��,

0 otherwise,
�

�39�

where �=RS
3 /R3 is the volume fraction �0���1�. Introduc-

ing this static dephasing frequency density of states �39� into
the Fourier transformation �9� or evaluating the integral �8�,
the magnetization time evolution can be written as in the
cylindrical case �31� as

M0�t� =
�

1 − �
�hS��	�t� − �hS�	� t�� , �40�

with the sphere-specific h function

hS�x� = e−ix
1F1��

1

2

3

2
�3ix�

+ �
0

1

dzx�3z2 − 1��Si„x�3z2 − 1�… − i Ci�x�3z2 − 1��� .

�41�

The Kummer confluent hypergeometric function 1F1 is the
special case of Barnes extended hypergeometric function
�29� for p=1=q and the sine and cosine integral functions
given as �59�

Si�x� = �
0

x sin t

t
dt , �42�
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Ci�x� = − �
x

� cos t

t
dt . �43�

Performing the integration in one of the equations �13�–�15�,
we obtain the Laplace transformation of the static dephasing
magnetization decay, which can be written analogously to
the cylindrical case �34� in the form

M̂0�s� =
�

1 − �

1

s
	HS� s

�	�
� − �HS� s

	�
�
 , �44�

with the sphere-specific H function

HS�y� =
1

3
+

2

3
�1 − iy

3
�1 −

2i

y
�arccoth��1 − iy

3
� .

�45�

We note that this sphere-specific H function is identical to
the previously used function G �cf. Eq. �7� in �60�� with the
inverse argument, i.e., HS�y�=G�1/y�. Knowing the function
HS, we are able to obtain an analytical expression for the
frequency density of states valid in all diffusion regimes.
Applying the same steps as for cylinders, we eventually ar-
rive at

p��� =

S

���Re

HS�1 + i
S�

�
S	�
� − �HS�1 + i
S�


S	�
�

1 − �

�
�1 + i
S�� − HS�1 + i
S�

�
S	�
� + �HS�1 + i
S�


S	�
�� . �46�

Analogously to the case of cylinders, reflecting boundary
conditions on the surface of the inner sphere are assumed to
obtain the correlation time 
. Using the general expression in
Eq. �5�, we arrive at an expression for this case �cf. Eq. �27�
in �43��:


S =
RS

2

2D�1 − ��	1 − �1/3 +
4�1 − ��2 + 9�2� − �5/3 − �1/3�

36��5/3 − 1� 
 .

�47�

To illustrate the dependence on the diffusion, the fre-
quency density of states is shown in Fig. 7 for different val-
ues of the diffusion coefficient D. In the case of a vanishing
diffusion coefficient, the frequency density of states coin-
cides with the static dephasing frequency distribution given
in Eq. �39� as shown in Fig. 1 of �34�. In the complimentary
case of an increasing diffusion coefficient D which corre-
sponds to the motional narrowing regime, the frequency dis-
tribution tends to a single-peaked narrow line shape as can
be seen in Fig. 7.

A Fourier transformation of the frequency density of
states p��� according to Eq. �16� leads to the magnetization
decay as shown in Fig. 8. The spin-echo signal decay can be
obtained from Eq. �22� and is shown in Fig. 9.

FIG. 7. Diffusion-dependent frequency density of states p���
for spheres obtained from Eq. �50� using the sphere H function
given in Eq. �45�. The parameters are volume fraction �=0.2, equa-
torial frequency shift 	�=1000 s−1, and radius RS=5 �m.

FIG. 8. Diffusion-dependent signal decay for spheres. The pa-
rameters are volume fraction �=0.2, equatorial frequency shift
	�=1000 s−1, and radius RS=5 �m.
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C. General expressions

The assumption that the shape of the voxel arises from a
central dilation of the magnetic inhomogeneity allows one to

write the magnetization time evolution in the static dephas-
ing regime according to Eq. �8� in the form

M0�t� =
�

1 − �
�h��	�t� − �h�	�t�� , �48�

where the function h is dependent on the form of the inho-
mogeneity only. The existence and uniqueness of this func-
tion h is confirmed by using the fundamental theorem of
calculus where lower and upper boundaries of the integral in
Eq. �8� are the surface of the inhomogeneity and the surface
of the voxel, respectively. In principle, the function h can be
evaluated numerically or analytically. According to Eq. �2�,
the frequency shift 	� characterizes the strength of the mag-
netic perturber. Analogously to the signal time evolution, the
Laplace transformation of this magnetization decay is given
by

M̂0�s� =
�

1 − �

1

s
	H� s

�	�
� − �H� s

	�
�
 , �49�

where the function H also depends on the form of the inho-
mogeneity only. Starting with Eq. �15�, using the same argu-
ments as before, H is the corresponding function to h in this
case.

To find an expression for the frequency distribution, Eq.
�21� has to be evaluated. Thus one eventually arrives at

p��� =



���Re

H�1 + i
�

�
	�
� − �H�1 + i
�


	�
�

1 − �

�
�1 + i
�� − H�1 + i
�

�
	�
� + �H�1 + i
�


	�
�� . �50�

This expression is the frequency density of states, which de-
pends on the susceptibility effect �characterized by the fre-
quency shift 	��, the shape of the magnetized object �char-
acterized by the function H�, and the diffusion �characterized
by the correlation time 
�. Evaluating the general expression
�5� as shown by �41,43,61�, the correlation time exhibits the
general expression for arbitrary shapes of the form


 =
L2

D
k��� , �51�

where L is the characteristic size of the magnetic inhomoge-
neity �i.e., the radius of the capillary or the sphere�, D is the
diffusion coefficient of the surrounding medium, and k��� is
a function of the volume fraction �, where k depends on the
shape of the magnetic inhomogeneity.

IV. EXPERIMENTAL VERIFICATION

To verify the analytical results experimentally it is neces-
sary to obtain the exact form of the free induction decay
caused by only the local magnetic field distortion of the sus-

ceptibility inhomogeneity. Hence, any kind of additional gra-
dients such as imaging or shim gradients influences dramati-
cally the form of the free induction decay and therefore its
Fourier transformation, which corresponds to the frequency
distribution. For this reason, gradient-echo sequences might
cause significant deviation in the free induction decay time
evolution, which hampers their application to this task. An-
other problem may arise from the fact that the frequency
distribution often has a small bandwidth centered around the
Larmor frequency �0=�B0 caused by the external magnetic
field. According to the Fourier theorem it is necessary to
obtain the exact form of the free induction decay for long
times to resolve the frequency interval in the immediate vi-
cinity of �0. The strong signal decay for long times leads to
a higher influence of the noise on the corresponding fre-
quency interval for small frequencies. Hence, an appropriate
method for quantification of the frequency distribution is the
voxel-selective PRESS �point resolved spectroscopy� se-
quence �62,63�. Localization is achieved by three frequency-
selective rf pulses �90°-180°-180°� in the presence of a B0
magnetic field gradient. Signals outside the selected voxel
are either not excited or not refocused, leading to a rapid

FIG. 9. Diffusion-dependent spin-echo signal decay for spheres.
The parameters are volume fraction �=0.2, equatorial frequency
shift 	�=1000 s−1, and radius RS=5 �m.
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dephasing. Unwanted coherences induced by deviations from
the nominal 180° nutation angles are dephased by the appli-
cation of spoiler gradients surrounding the 180° pulses.

To avoid any unwanted influence of additional gradients,
it is necessary to shim the voxel without the magnetic per-
turber. For this reason, we constructed a phantom which en-
ables us to shim on the previously selected voxel to obtain a
local Larmor frequency as close as possible to �0 throughout
the whole voxel. Afterwards, the magnetic inhomogeneity
has to be positioned into the voxel. This could be done with-
out any displacement of the whole phantom to avoid any
undesired distortion of the previously shimmed field inside
the voxel. A phantom which fulfills these conditions is
shown in Fig. 10. The voxel for shimming was selected
larger than the voxel for measuring to avoid imperfect shim
at the voxel boundaries. Furthermore, it was ensured that the
capillary exceeds the boundaries of the voxel significantly to
avoid distortions of the frequency distribution generated by
its finite length and that it was oriented parallel to the voxel
boundaries. A realization of this setup can be seen on the
right side of Fig. 11.

It consists of a water-filled 50-ml centrifuge tube �Nunc
GmbH & Co. KG, Thermo Fisher Scientific, Wiesbaden,
Germany� with an inner diameter of 28 mm. On one side, a
shiftable air-filled capillary with a diameter of 2RC=1 mm
�glass No. 140, Hilgenberg GmbH, Malsfeld, Germany� was
installed. This capillary, with negligible wall thickness, gen-
erates a susceptibility shift of ��=9 ppm to the surrounding
water.

The experiments were performed on a B0=7.05 T Bruker
Biospec system �Bruker BioSpin GmbH, Rheinstetten, Ger-
many� equipped with actively shielded imaging gradients �
397 mT/m maximum gradient strength� using a 72-mm
quadrature birdcage resonator for rf transmission and receiv-
ing. The PRESS sequence was accomplished in a single scan
with an echo time of TE=20 ms. For exaction and refocus-
ing, frequency-selective hermite shape pulses with a band-
width of 5.4 kHz were used to select a voxel inside the tube.

The free induction decay was recorded for 4.1 s at a band-
width of 4 kHz, resulting in nominal spectral resolution of
0.24 Hz.

Utilizing the above described procedure �first selecting
the voxel as shown on the left side of Fig. 11 and then in-
serting the capillary as shown on the right side of Fig. 11�,
we assured that only the susceptibility effects caused by the
capillary influence the signal from the voxel. Because of the
high sensitivity of the experiment on shimming, the size of
the cuboid has a substantial influence on the quality of the
measurement. In order to obtain analytical calculations we
assumed that the capillary is surrounded by a cylindrical
voxel as shown in Fig. 3. In the experiment a cuboid instead
of a cylindrical voxel was used. The differences between the
two shapes can be neglected in the case of a small volume
fraction �. A too small size of the cuboid voxel results in a
violation of this criterion �1 which justifies this replace-
ment. A too large size of the cuboid voxel results in an im-
perfect shim of the magnetic field at the margins of the
voxel. To find the optimal compromise between both require-
ments we selected a cuboid voxel with a size of 7.2 mm
�7.2 mm�7.2 mm and performed the shim procedure
when the capillary was outside the tube. This selection of the
size of the cuboid voxel is optimal for the used parameters of
the phantom. Thus, we obtain a volume fraction of �
=0.015 for the size of this voxel which justifies the equiva-
lence between a cuboid shaped voxel and a cylindrical voxel.
Because of the horizontal orientation of the main magnetic
field in the Biospec system, we were able to orientate the
capillary perpendicular to the external field, i.e., �=90°,
which maximized the susceptibility effect. To obtain the ex-
act form of the free induction decay which is not influenced
by any kind of gradients, we performed the PRESS sequence
with the capillary inside the previously selected voxel �see
Fig. 11�.

According to Eq. �25� the capillary generates a frequency
shift 	��=1341 Hz in this experimental setup. With the
known values for the frequency shift 	�� and the volume

FIG. 10. Scheme of the phantom used for measuring the fre-
quency distribution. The phantom was placed horizontally inside
the magnet with the hole for the movable capillary on top. The hole
for the capillary was sealed with rubber. The capillary was also
sealed on the side within the water.

FIG. 11. �Color online� Left side: water-filled tube with capil-
lary outside. The selected voxel was shimmed in this position. Right
side: water-filled tube with capillary inside. In this position, the
PRESS sequence was performed to measure the frequency
distribution.
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fraction � we are able to compare the experimentally ob-
tained spectrum with the predictions of Eq. �27�. In Fig. 12
we see a very good agreement between the theoretically and
experimentally obtained frequency distribution. Also, the
free induction decay, for which we are able to give an ana-
lytical expression �28�, is in good agreement with the experi-
mentally obtained free induction decay as shown in Fig. 13.
The frequency distribution around spheres was first consid-
ered by Cheng et al. �34�. Its experimental verification was
performed by Seppenwoolde et al. �53� with similar phan-
toms and procedures as used in our experiments. Hereby,
Fig. 7 in �53� is the corresponding figure for the spherical
case to our Fig. 12 for cylindrical geometry. As can be seen

in this publication, they also found good agreement for the
frequency distribution around spheres between the measured
and the analytical results of Cheng et al. �34�.

V. SUMMARY AND CONCLUSIONS

At present, the frequency distribution of spins around a
magnetic inhomogeneity is well understood in the static
dephasing limit only. However analytical results are limited
to special geometries such as spheres �34� or cylinders �9�. In
this work, a formalism to describe the frequency distribution
inside a voxel containing an arbitrarily shaped field inhomo-
geneity valid at the full range of diffusion regimes is devel-
oped.

The magnetic inhomogeneity creating the inhomogeneous
field is denoted by the area G �cf. Fig. 1�. It is surrounded by
the dephasing volume containing diffusing spins. The diffu-
sion process is characterized by the diffusion coefficient D.
As shown in the above analysis, the shape of the inhomoge-
neity G, the magnetic strength 	� of the inhomogeneity, and
the diffusion coefficient D alone determine the frequency
distribution. It is important to remember that for high exter-
nal magnetic field strengths, 	� depends on the saturation
magnetization rather than on the susceptibility shift and the
external magnetic field; i.e., hysteresis effects have to be
taken into account in these cases. Thus, one finds 	�
���M where �M is the difference in the magnetization of
the inhomogeneity and the surrounding tissue �cf. Eq. �1� in
�60��.

The form of the inhomogeneity G leads to the local fre-
quency ��r� around it �see Eq. �2��. For the special cases of
cylinders or spheres, this local frequency is given by a two-
dimensional or three-dimensional dipole field �Eq. �26� or
�38�, respectively�.

In Sec. II, the connection between the Laplace transfor-
mation of the magnetization time evolution and the fre-
quency distribution is shown and used to derive a general
expression for the frequency distribution valid in all diffu-
sion regimes. In order to do this, a connection between the
static dephasing regime and other diffusion regimes exploit-
ing the Laplace transformation of the magnetization decay is
used. This connection �7� was derived by Bauer et al. �6�
using a strong collision approximation. This approximation
represents a two-sided approximation of spin dephasing. It
interpolates the relaxation process from very long �static
dephasing regime� and short �motional narrowing regime�
correlation times. Recently, this approximation was applied
to describe the blood oxygen level dependent �BOLD� effect
in myocardium �6� and the transverse relaxation of magneti-
cally labeled cells �60�. To complement our previous work,
this paper focuses on describing a formalism to understand
the signal formation for general geometries and arbitrary
pulse sequences. For example, now it is possible to describe
the signal formation process of SPIO-labeled cells with
SSFP sequences �64�.

In this work, the general expression is analyzed treating
the limiting cases of 
→� �static dephasing regime� and 

→0 �motional narrowing regime�. Thus, it is possible to re-
obtain the well-known results of the static dephasing regime

FIG. 12. Comparison of the experimentally obtained spectrum
�solid line� with analytical result from Eq. �27� with the parameters
�=0.015 and 	��=1341 Hz �dashed line�. As can be seen from Eq.
�27�, the characteristic peaks are at the positions ±�	��, i.e., in our
case at the positions ±20 Hz, which is also in good agreement with
the experimental values.

FIG. 13. Comparison of the experimentally obtained free induc-
tion decay �solid line� with analytical result from Eq. �28� with the
parameters �=0.015 and 	��=1341 Hz �dashed line�.
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for spheres and cylinders �9,34� and the motional narrowing
regime.

The Bloch-Torrey equation has the form of the
Schrödinger equation for imaginary time and with an imagi-
nary potential in the Hamiltonian. Due to the imaginary po-
tential, the Hamiltonian is non-Hermitian which hampers the
development of a complete set of orthogonal eigenfunctions.
Thus, the above method provides a practical method to solve
the Bloch-Torrey equation at least in the strong collision ap-
proximation. Further analogies to quantum statistics arise
from Eq. �11�. The local Larmor frequency ��r� corresponds
to the dispersion relation of an excited ensemble �e.g., elec-
tron gas�. In this picture, the diffusion constant D corre-
sponds to the temperature and Eq. �21� is the generalization
of Eq. �11� to finite temperatures.

Recalling the form of quadrupolar spin-1 powder line
shape �65�, we can see that the frequency distribution around
a capillary in the case of small diffusion as shown in Fig. 4
looks similar to a first-order line shape as shown in Fig. 1 of
�66� or a Pake doublet as shown in Fig. 4 of �67�. The same
phenomenom occurs when comparing Fig. 7 with the
second-order line shapes shown in Fig. 2.5b of �65�. On re-
flection, this is not surprising, since the Hamiltonian of the
quadrupolar interaction �66� has a similar angle-dependent
part to the local field around a capillary or to the local Lar-
mor frequency in the case of dipolar interaction �68� has the
same form as in the case of the sphere.

Basic experiments have been performed to test the ana-
lytical results. The good agreement of theoretical and experi-
mental results shows that the setup generates a local reso-
nance frequency that is sufficiently close to the ideal
resonance frequency given in Eq. �26�. Thus, if the assump-
tion is that the capillary crosses the voxel completely, it is
possible to obtain information about the volume fraction
from the measured frequency distribution as stated in Eq.
�20� and Fig. 3 in �9�. Because of the high sensitivity to
shimming, these were very limited in varying parameters
which influence the underlying diffusion regime. The experi-
mental parameters imply measurements in the static dephas-
ing regime due to the large capillary radius and the small
diffusion coefficient which results in a long correlation time

 corresponding to a small dynamic frequency 1/
. In further
experiments, capillaries with smaller radius or higher diffu-
sion coefficients could be used to decrease the correlation
time and leave the static dephasing limit. Increasing the dif-
fusion coefficient could be achieved by heating the surround-
ing water, but has to be done carefully to avoid convection.
Besides this, slightly varying temperatures can lead to mis-
adjustment of the shim. Also, adjusting other parameters like
the characteristic frequency 	� or the volume fraction �
should help to select the diffusion regime properties.

The theory could be further tested by performing an ex-
periment with the response profile of an SSFP sequence �cf.
Fig. 2 and Eq. �1��. The appropriate method wold be a spec-
troscopic fast-acquisition double-echo �FADE� sequence �69�
as previously used by Dreher et al. �70�.

ACKNOWLEDGMENTS

This work was supported by the Schering Stiftung and the

Deutsche Forschungsgemeinschaft-Sonderforschungsbereich
688 “Mechanismen und Bildgebung von Zell-Zell-
Wechselwirkungen im kardiovaskulären System.” We thank
Jan-Henry Seppenwoolde, Jan Sedlacik, and Jürgen Reichen-
bach for stimulating discussions concerning the experimental
verification and Stephan Glutsch for helpful comments con-
cerning the numerical simulations.

APPENDIX: STRONG COLLISION APPROXIMATION

In this work, a central result of the strong collision ap-
proximation, especially Eq. �7�, is used to obtain the local
Larmor frequency distribution around field inhomogeneities
valid for all diffusion regimes. Thus, a short review of the
strong collsion approximation used throughout this paper is
given in this appendix.

Discretizing the diffusion process, a jump dynamics be-
tween the different local Larmor frequencies can be intro-
duced. This is realized by replacing the diffusion operator
D�2 in Eq. �3� with a rate matrix R= �rij�, where the rij

describes the transition rate of spins from a position with
local Larmor frequency �i to a position with local Larmor
frequency � j. If we assume that this transition probability
depends only on the actual position of the spin, we can re-
place the diffusion process by a Markov process described
by the generator R. In this situation the time evolution of the
spin is written in the form �tmi�t�=� jrijmj�t�+ i�imi�t�,
where mi�t� is the transverse magnetization of a spin at a
position with local Larmor frequency �i. The off-resonance
frequencies caused by the field inhomogeneity can be written
in matrix form �= ��i	ij�. Introducing the vector �m�t��,
where the ith element describes the transverse magnetization
at Larmor frequency �i, we obtain a generalization of the
Bloch-Torrey equation in operator form

�

�t
�m�t�� = �R + i���m�t�� . �A1�

In the original work of Torrey �18�, diffusion processes were
considered, i.e., R=�D�x��, �=��x�, and �m�t��=m�t� with
the local Larmor frequency ��x� and the local diffusion co-
efficient D�x�. Therefore, the original Bloch-Torrey equation
�3� is a special case of the more general equation �A1�. The
formal solution of Eq. �A1� is given by �m�t��=exp�R
+ i��t�m�0��.

The initial magnetization vector �m�0�� is proportional to
the equilibrium eigenvector and thus �m�0��� �0�. Normaliz-
ing the magnetization to unity �i.e., �0 �m�0��=1�, the time
evolution of the magnetization averaged over the complete
dephasing volume can be calculated in the sense of Eq. �4�:

M�t� = �0�exp�R + i��t�0� . �A2�

At this point, it is important to note that the generator of the
stochastic process R is not Hermitian. Thus, the left eigen-
vector of R is not just the transpose of the corresponding
right eigenvector of R as shown on p. 36 in �24�.

To solve this general expression, we utilize a strong col-
lision approximation �6,71�. The phrase “strong collision”
has been used in many contexts by different authors. We
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consider the strong collsion model in the sense of Dattagupta
and Blume �72�, which coincides with the model used by
Lynden-Bell �73�. This approximation is adapted from statis-
tical physics, where it is used to characterize Markov pro-
cesses, i.e., processes where the initial and final states are
stochastically independent and the transition probability be-
tween these states is proportional to the equilibrium prob-
ability of the final state. In the strong collision approxima-
tion, the generator of the stochastic process is replaced with
the following form:

R →
collision

strong
D = ��� − 1� , �A3�

where �= �0��0� is the projection operator on the subspace
spanned by the equilibrium eigenvector �0� of the generator
R. The operator D describes the diffusion as a stationary
Markov process with a single rate � that governs the dephas-
ing of the steady-state distribution p�r� independent of the
initial state. Assuming the homogeneity of the surrounding
tissue, the steady-state distribution is given by p�r�=1/V.
Therefore, the application of the operator � on some func-
tion g�r� yields

�g�r� = p�r��
V

d3rg�r�, 1g�r� = g�r�, p�r� =
1

V
.

�A4�

The identity operator is denoted by 1.
The fluctuation parameter � in the approximation �A3� is

the parameter which describes the time scale of the transi-
tions in the Markov process. To determine this parameter we
consider the correlation function K�t� of the original diffu-
sion process described by the Bloch-Torrey equation �3�.
This correlation function is defined as follows:

K�t� = ���t���0�� = �0�� exp�Rt���0� . �A5�

In terms of the original problem where the diffusion is de-
scribed by the diffusion operator �R→D�2� and takes place
in the local Larmor frequency ��→��r��, the correlation
function can be written in the form

K�t� =
1

V
�

V

d3r�
V

d3r���r�exp�D�2t���r�� . �A6�

As shown in previous publications �6,43�, it is possible to
define a correlation time 
 of a diffusing spin, which is de-
termined in the context of a mean relaxation time approxi-
mation �74�, as �6,43�


 ª �
0

�

dt
K�t�
K�0�

�A7�

and characterizes the time scale of the field fluctuations in-
duced by molecular motion. Application of the correlation
function of the original diffusion process given in Eq. �A6�
to the mean relaxation time approximation �A7� yields the
integral representation of the correlation time given in Eq.
�5�. To obtain this correlation time, it is assumed that diffu-
sion takes place in the dephasing volume between the surface

of the magnetic inhomogeneity and the surface of the voxel
only. As shown in �41,43,61�, this integration is straightfor-
ward and results in 
=L2k��� /D, where L is a characteristic
length of the field inhomogeneity, i.e., the radius of a cylin-
der or a sphere. As shown in �41�, the form function k���
also depends only on the shape of the inhomogeneity. The
expression �1/�2���r�=c�r� in Eq. �5� is the solution of the
inhomogeneous Laplace equation �2c�r�=��r� with the
same boundary condition as the original Bloch-Torrey equa-
tion �3�, which is possible since both differential equations
are of the same type. The boundary conditions at the surface
of the voxel as well as at the surface of the inhomogeneity
provide the integration constants of the second-order differ-
ential equation. In this way, it is possible to incorporate the
boundary conditions of the original problem in the strong
collision approximation. For detailed discussion, see Eqs. �6�
and �7� in �43�.

To connect the fluctuation parameter � with the correla-
tion time 
, we replace the rate matrix R by its strong colli-
sion approximation ���−1� in the definition of the correla-
tion function, which yields K�t�= �0 �� exp����−1�t�� �0�.
Inserting this expression of the correlation function into the
definition of the correlation time, Eq. �A7�, we eventually
arrive at


 = �
0

�

dt
�0�� exp���� − 1�t���0�

�0��2�0�
=

1

�
. �A8�

Hence, we are able to determine the time evolution of the
magnetization M�t� by applying the strong collision approxi-
mation �A3� with �=
−1 to the universally valid Eq. �A2�,
yielding

M�t� = �0�exp��
−1�� − 1� + i��t��0� . �A9�

Calculating the Laplace transformation of Eq. �A9� with the
help of Eq. �6� yields

�A10�

Applying the operator identity �A+B�−1=A−1−A−1 ·B · �A
+B�−1 with abbreviations A= �s+
−1�1− i� and B=−
−1�
to Eq. �A10�, the Laplace transformation of the magnetiza-
tion decay is found to be

�A11�

where the subscript zero denotes quantities in the static
dephasing regime, where the diffusion effects are neglected,
i.e., R=0. Thus, the magnetization in the static dephasing
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regime is given by M0�t�= �0 �exp�i��t �0�. Resolving Eq.
�A11�, we eventually obtain Eq. �7�.

The statement of the stochastic independence of the initial
and final states is closely connected with the assumption of
an ergodic system. It means that the time scale of the field
fluctuations determined by the diffusion process is signifi-
cantly smaller than the time scale of the spin dephasing pro-
cess. Only under this assumption the trajectory of the spin
can cover nearly all possible local Larmor frequencies lead-
ing to the claimed stochastic independence of the intial and
final states. Obviously, this demands strong diffusion, which
is characterized by a large diffusion coefficient. Thus, the
strong collision approximation works well in the motional
narrowing regime. Besides this, in the calculation of the cor-
relation time the full diffusion operator was taken into ac-
count. This leads to the correct dependence of the correlation
time on the diffusion coefficient 
�D−1 for all diffusion re-
gimes. Thus, we introduce the correct behavior for small
diffusion coefficients and can extend the results of the strong
collision approximation to the static dephasing regime.

To give a mathematical criterion for the applicability of
the strong collision approximation, we write the local larmor
frequency in the general form ��r�=	�f�r�; i.e., we seperate
the the susceptibility properties from the form and size of the
inhomogeneity as shown in Eq. �2� of �41�. Thus, we can
write local larmor frequencies around a cylinder �26� in the
form �C�r�=	��fC�r� with the cylinder specific geometry

function fC�r�=RC
2 cos�2�� /r2. Analogously to Eq. �38�, the

sphere specific geometry function fS�r�=RS
3�3 cos2 �−1� /r3

can be found. Using the expectation value �f�r��
=1/V�Vd3rf�r� of the geometry function f�r�, we can apply
the condition �f�r�= �f2�r��− �f�r��2� �2
	�2�−1 given in
Eq. �29� of �41� to finally arive at �
C	��

2�1 for cylinders
and �
S	�2�5/8 for spheres. These inequalities can be
viewed as mathematical criteria for the applicability of the
strong collision approximation in these cases.

Diffusion processes in inhomogeneous magnetic fields
were also treated by Kubo �cf. Eq. �6.28� in �24��. The results
of the strong collision approximation have a close connec-
tion to the line-shape theory of Kubo. To show this, we apply
the Laplace transform to Eq. �A2� and substitute the result
into Eq. �19�, which finally yields

p��� =
1

��
�Re�0�

1

R + i�� − �1�
�0�� , �A12�

which is in agreement with the results of Kubo �cf. Eq.
�6.25� in �24��. Using the strong collision approximation, we
were able to simplify this expression and obtain with Eq.
�21� an applicable expression for the line shape at all diffu-
sion regimes. Numerical results, by solving Eq. �A12� in the
case of linear gradients ��r�=�0+�Gz, have been published
by Pütz et al. �cf. Eq. �10� in �22��.
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